
Cross domain search timing
By: Chris Evans
URL: http://scarybeastsecurity.blogspot.com/2009/12/cross-domain-search-timing.html

I've been meaning to fiddle around with timing attacks for a while. I've had 
various discussions in the past about the significance of login determination 
attacks (including ones I found myself) and my usual response would be "it's 
all moot -- the attacker could just use a timing attack". Finally, here's some 
ammo to support that position. And -- actual cross-domain data theft using 
just a timing attack, as a bonus.

Unfortunately, this is another case of the web being built upon broken specif-
ications and protocols. There's nothing to stop domain evil.com referencing 
resources on some.sensitive.domain.com and timing how long the server takes to 
respond. For a GET request, a good bet is the < img > tag plus the onerror() / 
onload() events. For a POST request, you can direct the post to an < iframe > 
element and monitor the onload() event.

Why should an evil domain be able to read timing information from any other 
domain? Messy. Actually, it's even worse than that. Even if the core web model 
didn't fire the relevant event handles for cross-domain loads, there would 
still be trouble. The attacker is at liberty to monitor the performance of a 
bunch of busy-loops in Javascript. The attacker then frames or opens a new 
window for the HTML page they are interested in. When performance drops, the 
server likely responded. When performance goes up again, the client likely 
finished rendering. That's two events and actually a leak of more information 
that the pure-event case.

Moving on to something real. The most usable primitive that this gives the 
attacker is a 1-bit leak of information. i.e. was the request relatively fast 
or relatively slow? I have a little demo:

https://cevans-app.appspot.com/static/ymailtimings.html

It takes a few seconds, but if I'm not logged into Yahoo! Mail, I see:

DONE! 7 79 76 82

From the relatively flat timings of the last three timings (three different 
inbox searches) and the relative latency between the first number and the 
latter three, it's pretty clear I'm not logged in to Yahoo! Mail.

If I'm logged in, I see:

DONE! 10 366 414 539

This is where things get interesting. I am clearly logged in because of the 
significant server latency inherent in a text search within the inbox. But 
better still, the last three numbers represent searches for the words 



nosuchterm1234, sensitive and the. Even with a near-empty inbox, the server 
has at least a 40ms difference in minimum latency between a query for a word 
not in the index, and a query for a word in the index. (I mailed myself with 
sensitive in the subject to make a clear point).

There are many places to go from here. We have a primitive which can be used 
to ask cross-domain YES/NO questions about a victim's inbox. Depending on the 
power of the search we are abusing, we can ask all sorts of questions. e.g. 
"Has the victim ever mailed X?", "If so, within the past day?", "Does the word 
earnings appear in the last week?", "What about the phrase 'earnings sharply 
down'?" etc. etc. By asking the right YES/NO questions in the right order, you 
could reconstruct sentences.

It's important to note this is not a failing in any particular site. A partic-
ular site can be following current best practices and still be bitten by this. 
Fundamentally, many search operations on web sites are non-state-changing GETs 
or POSTSs and therefore do not need XSRF protection. The solution, of course, 
is to add it (and do the check before doing any work on the server like walk-
ing indexes)!

With thanks to Michal Zalewski for interesting debate and Christoph Kern for 
pointing out this ACM paper[1], which I haven't read but from the abstract it 
sounds like it covers some less serious angles of the same base attack.

1. http://portal.acm.org/citation.cfm?id=1242656


