
Attacking Server Side XML Parsers
By Kingcope

Preface

During the audit of web applications one might come across an application which handles XML files.
Specifically there can be an application which allows uploading XML files which are thereafter inserted
into a database and used for later displaying on the front end of the application viewable by the user.

I came across a significant “vulnerability class” which allows an attacker (or penetration tester) to
evoke a scenario which will give access to all files on the underlying file system which the application
server runs as. This includes (in the case the application is programmed in the Java language) access
to directory listings as well.

The conditions that need to be met so an attack is possible

As described in the former passage the attack is restricted to web applications which allow in a
particular way that XML files are parsed on the server side. This can be a Java application which
presents an upload form for XML files. I have seen this type of bug especially in Java web-
applications, but this applies to any programming languages that allow parsing of XML files that are
later on displayed.

The XML files must be used for displaying datasets on the website for the vulnerability to be exploited.
Let’s take the example of a web application which after uploading the XML file displays specific entries
of the XML structure.

An example of a vulnerable application

The underlying servlet container in our example will be a version of Apache Tomcat but the attack
does not depend on the underlying software, it relies on the web application itself.
For simplicity our vulnerable servlet does not provide an upload form but a text box which is filled with
XML data that is, after the form is submitted, parsed and parts of it displayed on the screen.

The below servlet receives its XML data in the doPost method and uses the javax.xml.parsers classes
to parse the XML input. The XML is very simple and includes employee data including first and last
names.

Figure 1: The vulnerable servlets awaits XML input to be parsed

The source code of the vulnerable application which is later used to disclose files and directories looks
like the following and seems unsuspicious from a developers point of view.

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.*;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;

public class VulnerableServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Arbeit an doPost() delegieren
 doPost(request, response);
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 try {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 if (request.getParameter("xmldata") == null) {
 out.println("<form method=\"post\" action=\"VulnerableServlet\"><textarea name=\"xmldata\"
cols=75 rows=25>Input XML data here.</textarea><input type=\"submit\" value=\"Submit\"/></form>");
 } else {

 StringReader reader = new StringReader(request.getParameter("xmldata"));
 InputSource inputSource = new InputSource(reader);
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse(inputSource);
 reader.close();
 doc.getDocumentElement().normalize();
 out.println("Root element " + doc.getDocumentElement().getNodeName() + "
");
 NodeList nodeLst = doc.getElementsByTagName("employee");
 out.println("Information of all employees" + "
");

 for (int s = 0; s < nodeLst.getLength(); s++) {

 Node fstNode = nodeLst.item(s);

 if (fstNode.getNodeType() == Node.ELEMENT_NODE) {

 Element fstElmnt = (Element) fstNode;
 NodeList fstNmElmntLst = fstElmnt.getElementsByTagName("firstname");
 Element fstNmElmnt = (Element) fstNmElmntLst.item(0);
 NodeList fstNm = fstNmElmnt.getChildNodes();
 out.println("First Name : " + ((Node) fstNm.item(0)).getNodeValue() + "
");
 NodeList lstNmElmntLst = fstElmnt.getElementsByTagName("lastname");
 Element lstNmElmnt = (Element) lstNmElmntLst.item(0);
 NodeList lstNm = lstNmElmnt.getChildNodes();
 out.println("Last Name : " + ((Node) lstNm.item(0)).getNodeValue() + "
");
 }
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The servlet receives the request parameter xmldata from the form shown in Figure 1 and parses it
using the parse() method of the javax.xml.DocumentBuilder class.

Now let’s feed some XML to the servlet and see what the output displays.
The inserted XML to be parsed is the following employee list:

Figure 2: The form is filled with XML data

When the data is parsed the user is presented with the following human readable text:

Figure 3: The output of the servlet after submitting the XML file

Conducting the attack

The trick now is to manipulate the submitted XML file in a way that a first or last name contains the
desired file data or directory listing after being parsed on the server side.

This is a rather easy task as per definition the XML standard allows document type declarations to
precede the actual XML data. Furthermore the XML standard allows referencing a local file to be
included as an “external entity”. This is the exact functionality we will use to disclose files remotely off
the server.

Let’s consider the following DOCTYPE declaration:

<?xml version="1.0"?>
<!DOCTYPE rootelement [
 <!ELEMENT rootelement (#PCDATA)>
]>
<rootelement>Hello Jupiter!</rootelement>

As you can see the document type enclosed directly after the XML version tag describes the
behaviour of the actual XML data. In this case it describes what data type the root element of
the XML data actually is.

Then we add another describer to the DOCTYPE, which in this case is special, it is the
external entity declarer which references to a local file on the system (and as we can see
later also applies to directories):

<?xml version="1.0"?>
<!DOCTYPE rootelement [
 <!ELEMENT rootelement (#PCDATA)>
 <!ENTITY c SYSTEM "file:///c:/boot.ini">
]>
<rootelement>&c;</rootelement>

In the above construct you can see that the “variable” ´c´ in the XML data will be substituted
by the external data of the file c:\boot.ini, meaning that the rootelement XML element will
include the contents of the file c:\boot.ini after being parsed by the servlet.

So the main action a penetration tester has to take is to rewrite the DOCTYPE in a shape
that it conforms to the XML elements which it actually describes. When the penetration tester
has successfully written a DOCTYPE declaration which will not make the servlet fail in
parsing he just has to add the “variable” ´c´ to the appropriate place in the XML elements
which is later on displayed on the screen.
In our XML example the variable is placed into the elements ´firstname´ or ´lastname´ as
both are shown to the user.

Let us see what happens when we input the correct DOCTYPE and click on submit.

Figure 3: A correct DOCTYPE is presented to the servlet

As the above XML file illustrates the DOCTYPE is adjusted to the XML data, in this case only the root
element of the XML data has to be adjusted and the external entity which references the local file has
to be put in. The third employees´ first name is now replaced by the external entity variable and as the
following figure illustrates the attack succeeds:

Figure 4: The third “First Name” now includes the contents of the requested file.

Java does not distinguish between requested files and requested folders when parsing external
entities, therefore the whole file system can be traversed.

Figure 5: When requesting the directory file://c:/ the whole directory structure is displayed by the
vulnerable servlet.

Conclusion

As we see it is rather easy to trick the XML parser of a web application to disclose files remotely. All
that has to be done by the attacker is to create the appropriate XML document.
The attack is known as the XXE (Xml eXternal Entity) attack. The scope of the attack is often unknown
as it can be applied to web applications too.

